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Abstract:  In post-earthquake surveys, it is diffi  cult (and often infeasible) to observe and quantify displacements beyond 
line-of-sight (LOS), given seismic force-resisting and gravity systems exist completely or partially within a building′s 
enclosure. To overcome this limitation, we develop a novel framework that generalizes graph-based state estimation towards 
structural joint localization via engineered landmarks. These landmarks provide an indirect means to estimate residual 
displacements where direct LOS is unavailable. Within our framework, engineered landmarks defi ne topologies of uniquely 
identifi able landmarks that are either visible or non-visible to a robot performing simultaneous localization and mapping 
(SLAM). Within the SLAM approach, factors encoding robot odometry and robot-to-visible landmark measurements are 
formulated for the cases of wireless sensing and fi ducial object detection and tracking. Visible landmarks are rigidly attached 
to non-visible landmark subsets for each engineered landmark, where the complete set of non-visible landmarks form 
globally rigid and localizable connectivity graphs via range-based factors. Complimentary subsets of non-visible landmarks 
are embedded within the base structure and uniquely defi ne joint pose via geometric factors. All factors are unifi ed within a 
common graph to solve for the maximum a posteriori estimate of robot, landmark, and joint states via nonlinear least squares 
optimization. To demonstrate the applicability of our approach, we apply the Monte Carlo method over a parameterization 
of system noise to calculate residual joint pose error distributions, maximum average inter-story drift ratios, and related 
summary statistics for a 19-story nonlinear structural model. By performing nonlinear time history analyses over sets of 
service-level and maximum considered earthquakes, our parametric study gives insight into our method′s application towards 
post-earthquake building evaluation in non-LOS conditions.
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1  Introduction

Post-earthquake, damage assessment is a necessary 
step towards the safe demolition, repair, and/or 
reoccupation of critical infrastructure. Standard 
methods of assessment, such as those described in 
ATC-20 (Applied Technology Council, 2005), centre on 
inspectors evaluating exterior, visual signs of structural 
and non-structural component damage to infer the extent 
of remaining structural capacity. With inference based 
on human judgment and subjective ratings of component 
damage, building safety is consequently limited to 
categorical designations, such as: safe to reoccupy, 
limited entry, and unsafe to reoccupy. Research has 
looked towards augmenting these practices to explicitly 

measure component damage and to relate these damage 
states to building safety. Methods proposed for measuring 
component damage in situ are numerous and generally 
centre on structural health monitoring (SHM) and 
remote/robotic inspection. We acknowledge predictive 
modelling (Zhang et al., 2018; Zhang and Burton, 2019; 
Zhang et al., 2019) too plays a signifi cant role in post-
earthquake damage assessment, though in this paper we 
limit our review to on-site methods.

Among other damage measures, traditional SHM has 
looked towards measuring inter-story drift as a global 
engineering demand parameter (EDP) given its wide 
adoption in seismic design codes and standards (ASCE/
SEI 43-05, 2005; ASCE/SEI 7-16, 2016; Eurocode 8, 
2004; NZS 1170.5, 2004). More specifi cally, seismic 
design codes and standards categorize damage and 
performance limit states proportional to the inter-
story drift ratio (IDR), which is defi ned as the relative 
translational displacement between two consecutive 
fl oors divided by the story height (Skolnik and Wallace, 
2010). To objectively estimate IDR for post-earthquake 
damage assessment, early works focused on massively 
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instrumenting buildings with accelerometers and wire 
gauges, such as linear variable diff erential transmitters 
(LVDT) (Celebi, 2005). With this instrumentation, 
acceleration measurements on consecutive fl oors are 
double integrated to recover IDR while the lengthening/
shortening of wires (spanning diagonally across 
framing) is used to directly estimate IDR assuming rigid 
center-line motions. The simplicity of these methods 
comes at a cost of accuracy and reliability, with inelastic 
deformations under-estimated via high-pass fi ltering 
of accelerations and long span frames, rotations, wire 
creep/sag, and partition walls reducing the eff ectiveness 
of wire gauge readings (Skolnik and Wallace, 2010).

Modern SHM methods have looked towards the 
application of computer vision (Park et al., 2015; 
Hsu and Kuo, 2020; Yang et al., 2020b) and optical 
laser sensors (McCallen et al., 2017; Petrone et al., 
2018) to directly measure transient and residual IDR 
for accurate and repeatable observations. Park et al. 
(2015) employ a motion capture system to estimate 3D 
structural displacements (via the tracking of markers 
defi ning structural joint pose) and demonstrate their 
method eff ective under torsional and lateral forcing. 
The author′s method, however, is limited to small 
scale testing and neglects non-line-of-sight (non-
LOS) conditions, rendering this approach practically 
infeasible in the assessment of internal damage. In 
scaling computer vision to real-world application, Hsu 
and Kuo (2020) presents a stand-alone smart camera 
system that can be deployed within a building′s seismic 
force-resisting system (SFRS) to directly estimate IDR. 
The system compensates for camera rotations during 
earthquake excitation as well as residual IDR via fusion 
of accelerometer and camera-based IDR measurements. 
Yang et al. (2020b) develops a similar stand-alone 
system, though forgoes the use of accelerometers and 
mounts the camera outside of the building′s SFRS to track 
discernible features within ceilings while additionally 
measuring torsional responses. Using optical sensors, 
McCallen et al. (2017) and Petrone et al. (2018) propose 
directly measuring IDR across consecutive fl oors; 
however, assumptions on SFRS confi guration and in-
plane rotations limit these systems to specifi c structural 
confi gurations. Generalizing IDR estimation to arbitrary 
structural confi gurations can be approached via joint 
translation measurements, where the additional measure 
of joint rotations potentiates the use of local EDPs (such 
as frame beam rotation, frame column rotation, etc.) for 
a more holistic approach to building safety (Yazgan and 
Dazio, 2012; Zhang et al., 2019).

Driven by the above need and technical challenge 
in estimating six degree-of-freedom (DoF) structural 
joint displacements, we develop a graph-based state 
estimation framework that allows for indirect measure of 
residual joint displacements for post-earthquake damage 
assessment. Central to our approach is simultaneous 
localization and mapping (SLAM), which addresses 

the problem of a robot acquiring a spatial map of an 
environment while simultaneously localizing itself 
relative to the generated map (Stachniss et al., 2016). 
To date, remote/robotic solutions for post-earthquake 
building evaluation have focused on the collection of 
visual data to inform decision making, with SLAM (Mao 
et al., 2018; Recchiuto and Sgorbissa, 2018), structure-
from-motion (Torok et al., 2012, 2014), and digital-twin 
techniques (Levine and Spencer, 2022; Wang et al., 
2022) providing a means for quantitative assessment. 
Similar to manual inspections, damage is inferred from 
visual information only with solutions yet to integrate 
methods of estimating in situ structural deformations. To 
address this research gap, our framework applies graph-
based state estimation to structural joint localization 
via engineered landmarks. Engineered landmarks 
defi ne topologies of uniquely identifi able landmarks 
that are either visible or non-visible to the robot 
performing SLAM. Within the SLAM approach, factors 
encoding robot odometry and robot-to-visible landmark 
measurements are formulated for the cases of wireless 
sensing and fi ducial marker detection and tracking 
(herein referred to as fi ducial objects). Active wireless 
sensors (herein referred to as anchors) act within a 
wireless sensor network (WSN) to sense adjacent nodes 
via time of fl ight (ToF) range measurements with known 
correspondence (Yick et al., 2008) while fi ducial objects 
provide an easily recognizable feature with embedded 
fault detection for robust pose estimation (Kalaitzakis 
et al., 2021). These visible landmarks are rigidly 
attached to non-visible landmarks subsets for each 
engineered landmark, where the complete set of non-
visible landmarks form globally rigid and localizable 
connectivity graphs (Priyantha et al., 2005) via range-
based factors that are generalized to any range-based 
sensor modality. Complimentary subsets of non-visible 
landmarks are embedded within the base structure and 
uniquely defi ne joint pose via geometric factors. Joint 
pose is recovered by solving the maximum a posteriori 
(MAP) estimate of robot, landmark, and joint states in 
a nonlinear least squares optimizer. In the advent of the 
Internet of Things (Khelifi  et al., 2019), we anticipate 
centimeter-level accurate wireless sensing technology 
(via ultra-wideband (UWB), mm-Wave, etc.) that is both 
aff ordable and low-power, allowing wireless sensors to 
be economically deployed at scale. Furthermore, the 
use of linear displacement sensors and compact LVDTs 
potentiates sub-millimeter accurate range measurements 
from visible to non-visible landmarks. Figure 1 illustrates 
our proposed framework, which is applicable to arbitrary 
structural confi gurations.

The remaining sections of this paper are as follows: 
Section 2 discusses related work; Section 3 presents 
our problem formulation with a primer on factor graphs 
and related nonlinear machinery; Section 4 details 
experiments conducted to validate our framework; 
Section 5 concludes with our outlook on future work.
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Fig. 1   Conceptual diagram of our six degree-of-freedom structural joint pose estimation framework in non-line-of-sight conditions.
                 To estimate residual joint displacements, robotic inspections (a) pre- and (b) post-earthquake are initialized from frame map , 
        which is defi ned by a landmark (ex. fi ducial object) and is assumed globally consistent pre- and post-event. During a 
       single simultaneous localization and mapping session, the robot navigates through each fl oor to measure all visible 
          landmarks (red), enabling the MAP estimate of structural joint pose given non-visible landmarks (green) constrain joint 
     and visible landmark states. For the particular scenario illustrated, the robot measures visible landmarks (from 
      keyframes p and q within its body frame B) associated with joint J  . Additional measurements from the robot 
           to visible landmarks are made over the course of the robot′s trajectory to better determine engineered landmark location

2  Related works

To our knowledge, there is no work that addresses 
structural joint pose estimation in non-LOS conditions. 
Given this, we focus our review on methods enabling 
our approach, which include sensor fusion strategies 
enabling robot-to-visible landmark measurements and 
rigid body localization methods enabling joint pose 
estimation.

2.1  Sensor fusion strategies

Wireless sensor fusion and fi ducial object detection 
and tracking methods have demonstrated improvements 
to SLAM system accuracy and robustness, with both 
modalities aff ording unique landmark localization with 
known correspondence. For wireless sensing, UWB has 
been studied extensively due to its robustness against 
multipath and non-LOS eff ects while maintaining 
relatively high ToF accuracy among alternative wireless 
technologies (Aiello and Rogerson, 2003). While we 
emphasize UWB fusion in our review, sensor fusion 
strategies generalize to any ToF wireless sensing 
modality. Literature on fi ducial object detection and 
tracking is extensive as well, and we briefl y review a 
key study quantifying fi ducial measurement model 
accuracy as the inclusion of fi ducial object detection and 
tracking in visual SLAM is handled similarly to visual 
keypoint detection and tracking (Munoz-Salinas and 
Medine-Carnicer, 2020). Note that we limit our review 
on wireless sensor fusion to graph-based methods, 
which tend to perform better than fi lter-based methods 
(Dellaert and Kaess, 2017).

2.1.1  Wireless sensor fusion

Wang et al. (2017) present one of the fi rst studies 
which fuses UWB with graph-based SLAM. The 
authors employ a loosely-coupled approach where 
UWB localization, visual-inertial odometry (VIO), and 
map optimization operate in parallel threads. Locally 
consistent odometry from VIO and drift-free global 
position estimates from UWB localization are added 
to a pose graph in the map optimization thread, where 
bundle adjustment is performed over a sliding window. 
As part of the optimization, cost functions formalizing 
range and smoothing errors are added, with range 
errors assumed zero mean Gaussian without bias. The 
authors observe their hand-crafted smoothing error, 
constraining consecutive keyframes via a motion model, 
to improve trajectory smoothness, compensating for 
noise introduced by the UWB localization thread.

Lutz et al. (2019) follow a similar loosely-coupled 
approach, extending their graph to optimize over anchor 
landmark position while jointly calibrating a UWB 
sensor measurement error model for all anchor-anchor 
pairs. The author′s error model accounts for antenna 
directivity, antenna delay bias, and biases introduced 
by non-deterministic signal propagation (i.e., non-
LOS conditions), with the latter observed to introduce 
the majority of outlier measurements in testing. Upon 
calibration, error models are simplifi ed to Gaussian 
distributions with mean values representing inherent 
biases and variances approximating ranging uncertainty 
after outlier removal. Biases from calibration are then 
added to UWB range factors, with residual errors 
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weighted by a Cauchy loss function.
Following trends in tightly-coupled formulations, 

Nguyen et al. (2020a) propose a monocular visual 
odometry system aided by a single UWB anchor. In this 
work, visual odometry factors and UWB ranging factors 
(similar to Wang et al. (2017)) are optimized jointly in a 
pose graph. Key contributions include 1) an initialization 
procedure leveraging UWB ranging measurements 
to recover metric scale and anchor position and 2) a 
monitoring process for refi ning these estimates over 
the course of data collection. The authors provide a 
framework to verify the existence of a solution to their 
initialization procedure, noting eff ective initialization 
when 1) an initial estimate of anchor position with 
respect to the fi rst camera frame is provided, 2) there is 
LOS from anchor to robot, and 3) the robot moves about 
multiple axes. The author′s monitoring system augments 
every keyframe by the nearest range measurement 
and estimated anchor position in a sliding window, 
minimizing both visual reprojection errors and UWB 
ranging errors via bundle adjustment. Augmentation 
occurs when the error on the current anchor position 
exceeds a prescribed threshold, reinitializing the system. 
Building on their own work in (Nguyen et al., 2020b), 
the authors extend their contributions to the handling of 
multiple anchors in degenerate confi gurations and the 
relaxation of good initial anchor position estimates via 
prior range measurements between anchor-world and 
anchor-anchor pairs.

Leading from (Nguyen et al., 2020a, 2020b), 
tightly-coupled formulations focusing on visual-inertial-
ranging (Cao and Beltrame, 2021; Nguyen et al., 2021a), 
lidar-inertial-ranging (Nguyen et al., 2021b), and lidar-
visual-inertial-ranging (Nguyen et al., 2021c) improve 
the state-of-the-art both in accuracy and robustness, with 
additional contributions for wireless fusion proposed. In 
(Nguyen et al., 2021b), the authors leverage preintegrated 
inertial measurements to estimate the robot′s movement 
between consecutive keyframes. In doing so, UWB 
range factors associate each range measurement with 
a robot pose for a shared time point, compared to 
past formulations associating range measurements to 
keyframes within a pre-defi ned time threshold. This 
retains the full set of UWB measurements, improving 
system accuracy. In Nguyen et al. (2021c), the authors 
build their system around four UWB anchors (defi ning 
a world coordinate system) from which the 6-DoF robot 
pose is estimated. This departs from earlier works, 
where UWB range factors only constrain the robot′s 
position. When comparing their lidar-visual-inertial-
ranging framework to visual-inertial-ranging and lidar-
inertial-ranging confi gurations, absolute trajectory error 
is reduced across all scenarios on the NTU VIRAL data 
set (Nguyen et al., 2021d).

2.1.2   Fiducial measurement modelling

Within visual SLAM systems, AprilTag (Olson, 
2011) and Aruco (Romero-Ramirez et al., 2018) fi ducial 

objects can be readily detected in gray-scale imaging 
systems and tracked similarly to other visual key points. 
Towards improving the localization accuracy of these 
fi ducial objects, Kallwies et al. (2020) present visual-
processing techniques that 1) fi lter out inaccurate 
detections resulting from partial board occlusion and 
2) refi ne detected edges and corners. With techniques 
jointly applied, median localization errors are reduced by 
a factor of ten to 0.017 px over existing implementations. 
The authors further quantify detection rate and RMSE 
pixel error as a function of incidence angle (between the 
imaging system and fi ducial object) and distance from 
which we establish a simplifi ed robot-to-fi ducial object 
measurement model in Section 4.1.

2.2  Rigid body localization

A method for rigid body localization using a WSN 
is proposed by Chepuri et al. (2014). In this work, the 
authors formulate joint pose estimation via anchor-tag 
range measurements and tag-joint geometric relations in 
a nonlinear least-squares optimizer. Here, tags refer to 
passive wireless sensors that are sensed by anchors with 
known correspondence, where tag topology relative to 
the joint’s coordinate frame potentiates joint localization. 
Uncertainty in tag position (relative to the joint) is 
handled by constrained total-least-squares estimators, 
with our framework accounting for uncertainty via a 
custom factor (constraining pose to position) derived by 
Wisth et al. (2023). Note that in our work, we consider 
all WSN nodes integrated with engineered landmarks to 
be anchors.

3  Problem formulation

Our structural joint pose estimation framework 
unifi es SLAM innovations discussed in Section 2.1 with 
the rigid body localization approach discussed in Section 
2.2 within a common graph-based solution. In doing so, 
we leverage the interrelations between all connected 
states (i.e., robot, landmark, joint) to provide an estimate 
that maximally agrees with all sensor information. To 
our knowledge, unifying these approaches has yet to be 
presented in literature and serves as the key novelty in 
this work. Though common knowledge in the robotics 
community, we briefl y discuss factor graphs and 
related machinery before proceeding to mathematical 
formalisms. Notation follows similarly to (Wisth et al., 
2023; Nguyen et al., 2021c).

3.1  Preliminaries

3.1.1 Factor graphs

A factor graph (see Fig. 2) is a bipartite graph 
  , , :F V E      that encodes measurements 

z Z  (either relative ijz  or absolute iz ) as factors i   
over a set of variables jx   describing a particular 
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Fig. 2  A simple factor graph represented in its general form: 
                  , , :F V E     (adapted from Dellaert and Kaess 
             (2017)). Factors i   encode measurements over a set 
      of variables jx   describing a particular system′s
    state space, while edges ij   encode functional   
               dependencies between factors and their connected variables

system′s state space (Dellaert and Kaess, 2017). Factor 
nodes are connected to variables nodes via undirected 
edges ij  , which encode functional dependencies 
between factors and their connected variables such that:

  ,ij i j i   x 
                      

(1)

where  i  defi nes the set of variables connected to 
factor i  via ij . The product over all factors yields the 
global function:

   i i
i

  
                         

(2)

where     specifi es the joint density over   as a 
product of factors    i i i ip Z  ∣   . In SLAM, we 
seek state (i.e., variable) values that maximally agree with 
the information present in the uncertain measurements 
(Dellaert and Kaess, 2017) such that:

 arg max


 
                       

(3)

where   is the MAP of  . Assuming measurements 
are conditionally independent and corrupted by white 
Gaussian noise, Eq. (3) can be formulated as a nonlinear 
least squares minimization problem:

2arg min || ||
ii

i

  r


 

                    
(4)

where  i i i ih z r   is the residual error taken as the 
diff erence between the measurement function  i ih   
and measurement iz , and    2 1|| || ( )

i i
      is the 

squared Mahalanobis distance with covariance matrix 
i . In this formulation,  i ih   and iz  must belong 

to vector spaces to ensure standard Gauss–Newton 
nonlinear optimization schemes can be applied to solve 
for Eq. (4).

3.1.2  Machinery

Given   (as for SLAM and other robotics inference 
problems) contains rotations SO(3)R  that exist within 
a  manifold  , we reparameterize Eq. (3) such that:

  arg max
n
 


 


  

                    
(5)

where   : n    is called a local 
reparameterization at  , or retraction function (Nguyen 
et al., 2021c). After the reparameterization, for each 
iteration in the Gauss–Newton method, the optimal 
gradient    is calculated and then the solution 
   from the tangent space is “retracted” back to the 
manifold using the operation   

    (Forster 
et al., 2016). We refer the interested reader to (Forster et 
al., 2016; Nguyen et al., 2021c) for details concerning 
retraction functions, Jacobians for functions acting on 
manifolds, and Riemannian geometry.

3.2  Proposed framework

Our framework′s state space is presented fi rst, with 
landmark topology and MAP estimation formalisms 
following. A factor graph representation of our 
framework is illustrated in Fig. 3.

3.2.1  State space

Let the complete history of observed states k  for 
all observable points up to time kt  be generalized as:

   K , L
, , ,

k k
k i i 

x f v h J    
             (6)

where ix  is the robot′s state at time it , with i  belonging 
to the set of keyframes Kk ; f  is landmark state for a 
unique identifi er   which belongs to the set of landmarks 

 L V ,H ,Jk k k k ; Vk  is the set of landmarks visible to 
the robot (i.e., LOS conditions exist from i kx   to 

Vkv  for   1i  ), Hk  represents the set of landmarks 
non-visible to the robot (i.e., non-LOS conditions exist 
from i kx   to Hkh   for all i ), and SE(3) Jk J  
is joint state. For our study, we consider anchors 

3 Ak a   and fi ducial objects  SE 3 Fk F  as 
visible landmarks:

 
    

wireless{ } ;

, , , ;L A ,E ,M ,J

k i i

k k k k k

x

f v a h e m J      

 

   

p

(7)

 
    

fiducial{ } , ;

, , , ;L F ,E ,M ,J

k i i i

k k k k k

x

f v F h e m J      

 

   

R p

(8)
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where 3 Ek e   are landmarks embedded within the 
base structure, and 3 Mk m   are markers rigidly 
attached to visible landmarks. In proceeding formalisms, 
we enforce e  and m  as uniquely identifi able to ensure 
uniquely determined joint pose. For the case of anchors, 
only the position of the robot is considered given ToF 
measurements from the robot to anchors does not require 
knowledge of the robot′s orientation. Moreover, the 
inclusion of orientation as a state variable diminished 
system accuracy in testing, hence its exclusion. For the 
case of fi ducial object detection and tracking, orientation 
of the robot is required to estimate fi ducial object pose 
with respect to the robot′s vision system and is thus 
included.

3.2.2  Landmark topology

We use the term engineered landmark when 
formalizing landmark topologies for all J :

   
  

, 1 1 1
wireless

1

{ } , A ; , E ;

                       , M ; J

s s s s s s
k k

s s
k k

  



  

 

w A A E E

M M J

    

  

   

(9)

   
  

, 1 1 1
fiducial

1

{ } , F ; , E ;

                       , M ; J

s s s s s s
k k

s s
k k

  



  

 

w F F E E

M M J

    

  

   

(10)

where , 1 Ls s
s k

 w    and ,  1s s   are consecutive 
fl oors in a building defi ning non-LOS conditions. 
Engineered landmark topology is defi ned according to:

     3 3 3; ;s s m s s n s s o       A a E e M m       
(11)

where the corresponding set of centroids 
  3 3, ,s s s a e m     defi nes the mean Euclidean 
distance between anchor-marker, and marker-embedded 
landmark sets as  ,s sa m d  and  ,s sm e d , respectively, 
for fl oor s . Similarly, the mean Euclidean distance 
between embedded landmark sets and joint position 
is   ,s se J  d p  while the mean Euclidean distance 
between fi ducial object position and marker landmark 
sets is   ,s sF m  d p . The set of marker-embedded 
landmark pairings is defi ned by the Cartesian product 
of sM  and sE , where pairs defi ne range measurements 

Fig. 3   (a) Factor graph representation of our proposed structural joint pose estimation framework. A prior factor (black) is assigned 
        to the fi rst robot state 0

0x  , where the subscript denotes state ID and the superscript denotes fl oor level (this notation 
         is common for all state variables in this fi gure). Odometry factors (red) constrain consecutive robot states, loop closing
          factors (blue) constrain non-consecutive robot states upon re-observation of the same environmental features/landmarks, 
            and robot-to-visible landmark factors (green) constrain the relative position between the robot and anchors (for the case of 
         wireless sensing) and relative pose between the robot and fi ducial objects (for the case of a vision system integrated with
           the robot). In our mathematical formalisms, we drop state superscripts and take the complete history of states as  K{ }

ki ix , 
       where Kk is the set of keyframes. (b) Unique to our framework, we formulate visible and non-visible landmarks into 
       topologies defi ning engineered landmarks  , 1s sw , where  ,  1s s    indicate consecutive fl oor levels from which visible 
        landmarks can be measured by the robot. Range-based factors (cyan) between embedded landmarks  3 e E   and
     marker landmarks 3 m M    form globally rigid and localizable connectivity graphs. Pose-to-position factors 
         (pink) constrain joint states  SE(3)J   with e   and visible landmarks (i.e., F  and A  ) to m  and wirless anchors la  
           for the case of wireless sensing. Note that  A  defi nes the pose from which anchors and markers are commonly constrained 
          such that   :A a  p  , where a   is the anchor set centroid.
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with known correspondence and must form a globally 
rigid connectivity graph for the joint to be localizable 
from fl oor s . By sensing engineered landmarks from 
consecutive fl oors, repeat observations reduce drift 
inherent to the SLAM system via loop-closure.

3.2.3  Maximum a posteriori estimation

Unifying SLAM factors with engineered landmark 
factors, the MAP of k  is formalized:
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(12)

where 0r  is the residual error on the robot′s initial state 
with covariance 0 ,  ,i j  are indices for consecutive 
keyframes,  ,p q  are indices for non-consecutive 
keyframes as determined by loop-closure detection, 

ij
r  

is the residual error for odometry, 
pq

r  is the residual 
error for loop-closure detection, ,ix v

r  is the residual 
error for robot-to-visible landmark measurements, ,v m 

r  
is the residual error for visible landmark-to-marker 
measurements, ,m e 

r  is the residual error for range 
measurements between marker-embedded landmark 
pairs, and ,e J 

r  is the residual error for embedded-to-
joint landmark geometric constraints. For the case of 
wireless sensing, SLAM factor residuals are formalized 
in Eqs. (13) through (16):
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where    indicates a measured quantity, B  Ap is the 
measured position in frame B with respect to frame A , 
W  defi nes the world coordinate frame, and B defi nes the 
body frame of the robot from which all robot-to-visible 
landmark measurements are assumed to be captured. 
Note that in practice, measurements taken with respect to 
sensor frame S  can be transformed into B using extrinsic 
calibrations. SLAM factor residuals considering fi ducial 
object detection and tracking are formalized in Eqs. (17) 
through (20):

0 00 WB WB r T T                            (17)

 1 1,
ij i j i jWB WB WB WB

    r T T T T                    (18)

 1 1,
pq p q p qWB WB WB WB

    r T T T T
                 (19)

 1 1
, ,

i i l i lWB WF WB WF
  x F
 r T T T T  

                
(20)

where  SE(3)AB    ∣T R p  is the homogeneous 
transformation matrix expressing the coordinate 
transform from A  to B  in A  such that 1

1 2 1 2
T T T T  

and 1 2 1 2 T T T T , and     is the lifting operator 
defi ned in (Forster et al., 2016). Engineered landmark 
factor residuals are:
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where   SE(3) : A A a   ∣ p  defi nes the pose from 
which anchors and markers are commonly constrained 
and is made possible by the use of rigid-body connections 
between anchors and markers.

4   Experimental evaluation

To evaluate our framework, we develop a 
custom simulator that allows for the construction 
and optimization of our factor graph with controlled 
measurements. Measurements are derived from ground-
truth quantities perturbed by zero-bias Gaussian noise 
such that:

 Exp ;     R R p p                  (26)

where  ,     and  Exp   is the exponential map 
operator defi ned in Forster et al. (2016). This allows for 
precise system noise parameterization, generalizing our 
results to SLAM systems and sensors meeting specifi c 
accuracy requirements. In doing so, residual joint pose 
errors are attributed to system noise and optimization 
convergence only. To demonstrate our framework in a 
future laboratory experiment, Fig. 4 illustrates a potential 
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set-up where methods addressing non-Gaussian noise 
(Huang et al., 2022a, 2022b), and outliers (Yang et al., 
2020a; Shi et al., 2021; Yang and Carlone, 2023) can be 
applied to real-world measurements. To arrive at residual 
joint pose error metrics and IDR results summarized in 
Section 4.4, we detail our simulation environment and 
modelling assumptions next.

4.1  Simulation environment

We simulate the robotic inspection of a two-
bay, 19-story building illustrated in Fig. 5(a), where 
engineered landmarks exist along the perimeter of the 
building to coincide with beam-column connections in 
the SFRS. We carry out inspections on the undeformed 
structure and note that landmark displacements can be 
equally determined pre- and post-earthquake given LOS 
conditions remain between visible landmarks and the 
robot. Inspection begins with the robot initializing from 
an arbitrary frame map  from which measurements are 
globally referenced. For convenience, we assume the 
world frame W  coincides with map , simplifying error 
calculations as ground truth quantities are referenced from 

W . In practice, the initialization method by Watanabe 
(2018) may be implemented for real-world deployment 
to ensure pre- and post-earthquake maps are referenced 
to a common map . For our study, we model uncertainty 
on the robot′s initialization for these methods via the 
prior on 0x . Alternatively, post-earthquake inspections 
may be carried out where estimated joint states are 
compared to the as-built structural model of the building.

To ensure all visible landmarks are measured by 

the robot during inspection, Fig. 5(b) illustrates the 
assignment of waypoints to suite the robot′s wireless 
sensing or vision system. Starting from fl oor 0s  , the 
robot navigates to each waypoint, completing a single 
loop prior to transitioning to the fl oor above. By 
representing the ground truth trajectory in continuous 
time using a second-order, b-spline curve in SE(3) , we 
sample ground truth poses at a key-frame rate of 0.5 s 
assuming a constant robot velocity of 0.5 m/s. We limit 
the maximum wireless range (between anchors and the 
robot) to the bay width w  and accordingly produce 
coverage envelopes that divide the total number of 
keyframes evenly between all engineered landmarks 
so they are equally determined. For the case of fi ducial 
object detection and tracking, we again limit the vision 
system′s fi eld of view to w  and assume a linear noise 
model irrespective of incidence angle:
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(27)

where   F
 and   F

 defi ne the mean and standard 
deviation of visual reprojection errors (in pixels) when 
detecting fi ducial objects (Kallwies et al., 2020) and f  
is camera focal length. Lastly, Fig. 5(c) illustrates the 
chosen topologies for this study, where   ,e J  d p  
and  ,e m d  parameterize uncertainty inherent to 
engineered landmark factors as described in Section 4.4.

Fig. 4   (a) 2D view of a potential laboratory experiment that may be established to validate our framework. A scaled seismic 
         force-resisting system (SFRS) is actuated to simulate beam-column residual joint displacement under various service 
            level and maximum considered earthquakes. A motion capture system is used to capture the ground truth position/pose 
             of the robot, while non-line-of-sight between visible and non-visible landmarks is introduced by a piece of drywall that is
            isolated from the scaled SFRS. Framework assumptions, including negligible panel zone shearing and visible landmarks 
          remaining visible to the robot post-earthquake (as discussed in Section 4.3), can be checked using this set-up. Note the 
            ground truth shape of the scaled SFRS may be obtained using dense structure from motion or a terrestrial laser scanner. 
          (b) A particular instantiation of the engineered landmark may involve three embedded landmarks, three markers, and 
            three anchors. Embedded landmarks may connect to markers via linear variable diff erential transmitters, while anchors 
           can be sensed by a single anchor integrated with the robot. The high-rate ground truth trajectory of the robot (obtained 
           by the motion capture system) can be sampled and perturbed to represent the current state-of-the-art SLAM system. A 
              rigid machined plate may connect markers and anchors and can be anchored into the drywall
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4.2  Finite element modelling

We evaluate how our proposed method can predict 
inter-story drift by constructing a fi nite element (FE) 
model of a tall, slender building. For this study, a steel 
moment-resisting frame (MRF) model was obtained 
from a database of seismic designs containing over 100 
diff erent geometric confi gurations, each designed under 
site-specifi c responses (Guan et al., 2021). The seismic 
design database contains nonlinear 2D FE OpenSees 
(Mazzoni et al., 2006) models for each design, allowing 

time-history analyses (under diff erent ground motion 
histories) to simulate realistic joint displacements. We 
chose the most slender building design, containing 19 
storeys and two bays, with 13h   ft (3.96 m) fl oor 
height per level and 20w   ft (6.092 m) bay width. The 
model is symmetric in the longitudinal and transverse 
directions, which allows us to assume that the 2D 
displacements of the model can be generalized to an 
equivalent 3D model (with the same geometry) in the 
orthogonal directions.

Nonlinear eff ects are considered by including 

Fig. 5  (a) Side-profi le of the two bay, 19 storey nonlinear structural model used to evaluate our framework. map  defi nes the 
       frame of a landmark (ex. fi ducial object) from which the SLAM system initializes. For this study, we model this 
          initialization via uncertainty on the fi rst robot state via a prior factor and assume map  coincides with the same global 

    coordinate system as the structural model (i.e., the world coordinate frame W ). (b) Top-down view of fl oor s . 
          Waypoints (orange circles) defi ne the robot′s ground truth trajectory (cyan dashed line), where the robot navigates to 
         each waypoint to complete the inspection of all engineered landmarks per fl oor. Pink envelopes illustrate the robot′s 
        measurement fi eld of view (FOV), where the robot′s trajectory is adjusted to suit its sensing modality. For the case 
         of wireless sensing (left), we envision a single wireless anchor node integrated with the robot to measure the relative 
       position of the robot with respect to wireless sensor networks integrated with engineered landmarks and assume 
       measurement uncertainty remains uniform within the FOV. For the case of fi ducial object detection and tracking 
            (right), we control for the robot′s trajectory to ensure the incidence angle between fi ducial objects and the robot′s vision 
            system minimally aff ects accuracy and thus assume measurement uncertainty to reduce linearly as the robot approaches 
           engineered landmarks in our simulations. (c) Engineered landmark topologies chosen for our study. Here,   ,e J  d p  
          defi nes the Euclidean distance between joint position  J  p  and embedded landmark set centroids e  and  ,m e d  
      defi nes the Euclidean distance between e  and marker landmark set centroids m . For this study, we take  
      1 1 1 3s s s s s s       E E M M A A       and assume fi ducial object pose F  and the pose defi ned by anchors A  
         (where  A p  equates to anchor set centroids a ) are constrained with m  via rigid connections that penetrate the
              building envelope
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geometric and material nonlinearity. For geometric 
nonlinearity, a P-Delta analysis is performed to simulate 
the infl uence of gravity loads on the lateral stiff ness of 
the building. Uniformly distributed gravity loads are 
applied at each level of the building, and a stability 
analysis is performed before and during ground motion. 
To simulate joint displacement during an earthquake, 
a concentrated plasticity model is used to simulate the 
nonlinear interaction in the beam-column region using 
inelastic hinges at both ends of each column, which also 
account for shear yielding in the panel zone. For the 
dynamic analysis, the Rayleigh damping ratio was set to 
2%. A detailed summary of loading, section properties, 
and nonlinear material parameters used for this study can 
be found in the seismic design database, model 1539.

The FE model is evaluated under service-level 
earthquake (SLE) and maximum considered earthquake 
(MCE) hazard levels, each containing 38 and 40 records, 
respectively, from the seismic designs database. 2D 
displacements from nonlinear time history analyses 
are represented in 3D where ground motions remain 
restricted to the 3D FE model′s longitudinal direction. 
This assumption is made given the 2D models are 
designed to satisfy SLE and MCE limit states; thus, 
combining their responses in orthogonal directions 
would over-estimate allowable IDR. Residual joint 
displacements from the time history analyses establish 
the ground-truth from which maximum average IDRs 
are calculated in Section 4.4.

4.3  Framework modeling assumptions

We assume the following when evaluating our 
framework:

(1) Embedded landmarks are secured to structural 
joints such that panel zone shear yielding is negligible 
(i.e., embedded landmarks undergo the same coordinate 
transformation as structural joints during the earthquake 
event).

(2) Visible landmarks remain visible to the robot 
post-earthquake, with rigid connections between visible 
and non-visible landmarks remaining secured within the 
building envelope.

(3) map  remains globally consistent pre- and post-
earthquake.

Further assumptions are made for the simulation 
conducted in this study:

(1) Measurement errors are precisely modelled by 
their associated covariance matrices when solving Eq. (12)

(2) Odometry measurements implicitly capture loop-
closures identifi ed within each fl oor, with error uniformly 
distributed across the set of measured positions (for 
the case of wireless sensing) and poses (for the case of 
fi ducial object detection and tracking). As such, we do 
not explicitly account for loop-closing measurements 

pq .
(3) Robot-to-visible landmark measurements occur 

at keyframe rate, with zero-drift time synchronization 
between all sensors. In practice, asynchronous ToF 

wireless measurements are rectifi ed using the methods 
of (Nguyen et al., 2021b) and would be implemented 
when deploying our system on hardware.

(4) MAP estimation is modelled as an offl  ine process.
(5) Measurements taken by the robot at keyframe 
Kkk  are expressed in its body frame 

kB  using 
ground truth calibrations.

4.4  Experimental evaluation

Experiments applying the Monte Carlo method 
characterize our framework′s performance as a function 
of system noise. To assess the applicability of our 
approach, the following noise parameters are established.

4.4.1  SLAM factors

The following odometry parameterization is 
consistent with values reported by Ramezani et al. (2022) 
for their state-of-the-art lidar-inertial SLAM system 
on the Hilti dataset (Helmberger et al., 2022), which 
represents a best-case scenario for robotic infrastructure 
inspection:
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For the case of wireless sensing, we parameterize 
robot-to-anchor measurements according to the 
theoretical upper bound for UWB (Oppermann et al., 
2004) and low cost UWB systems that are commercially 
available and economically viable for small scale 
infrastructure (Nguyen et al., 2021c):
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(29)

For the case of fi ducial object detection and tracking, 
we parameterize robot-to-fi ducial object measurements 
according to Eq. (27) and set   0.017 F  

px, 
  0.01 F  

px, and 1130f   px (as per Kallwies 
et al., (2020)) to approximate the state-of-the-art with 
controlled robot navigation:

3 2
, , 1diag({ } )

i i i x F x F 
                

(30)

4.4.2  Engineered landmark factors

For generality, we parameterize engineered landmark 
factors as a function of mean Euclidean distance 
according to:
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For marker-to-embedded landmark factors, 
percentages are adjusted to align theoretical and practical 
LVDT range measurements, while embedded-to-joint 
percentages refl ect precise and course installations 
respectively. In our experiments, all engineered 
landmarks are confi gured such that:

(1) The cardinality of anchor, marker, and embedded 
landmark sets is three: 3  A M E  

(2) Mean Euclidean distances are:   
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(3) Anchor, fi ducial object, and marker set centroids 
coincide:    1 1 1,  s s s s s s     a F m a F m       p p

(4) Anchors and markers are precisely 
secured to a common rigid plate such that: 

3 2
1, , diag({0.1 cm} )i A a A m   

  

4.4.3  Results

With the above parameterization, Table 1 provides 
summary statistics for residual joint translation 
and rotation errors for realizations 100n   Monte Carlo 
realizations according to:

   translation || J J   
‖r p p                (33)

    rotation || J J   
‖r R R

           
(34)

where     expresses rotations in Euler angles. 
Residual joint pose error distributions illustrated in Figs. 
6(a) and 6(b) show the importance of precise embedded 
landmark installation, where Cases B and D prove 
unreliable in rotation estimation for all cases. For precise 
embedded landmark installation, fi ducial object detection 

              Table 1   Monte Carlo simulation summary statistics (residual translation error (cm), residual rotation error (°), 
                              maximum average inter-story drift ratio (%) error) under a sensitivity of system noise*

Theoretical LVDT Practical LVDT
Case A: Precise 

Installation
Case B: Course 

Installation
Case C: Precise 

Installation
Case D: Course 

Installation
Case 1: Theoretical wireless sensing

mean (0.90, 0.19, 0.02) (1.76, 1.42, 0.07) (0.90, 0.19, 0.02) (1.76, 1.42, 0.07)
median (0.81, 0.17, 0.02) (1.59, 1.26, 0.06) (0.86, 0.18, 0.02) (1.61, 1.26, 0.05)

min (0.02, 0.00, 0.00) (0.03, 0.03, 0.00) (0.02, 0.01, 0.00) (0.02, 0.03, 0.00)
max (4.02, 0.95, 0.11) (6.97, 9.59, 0.36) (3.48, 0.93, 0.11) (7.42, 9.84, 0.32)

std. dev. (0.46, 0.10, 0.02) (0.96, 0.83, 0.06) (0.45, 0.10, 0.02) (0.95, 0.83, 0.05)
RMSE (1.01, 0.22, 0.03) (2.01, 1.65, 0.09) (1.02, 0.22, 0.03) (2.00, 1.64, 0.08)

Case 2: Commercial wireless sensing
mean (1.78, 0.21, 0.06) (2.38, 1.65, 0.09) (1.77, 0.21, 0.06) (2.39, 1.66, 0.09)

median (1.60, 0.18, 0.05) (2.12, 1.46, 0.07) (1.59, 0.19, 0.05) (2.14, 1.46, 0.07)
min (0.07, 0.00, 0.00) (0.04, 0.01, 0.00) (0.02, 0.00, 0.00) (0.08, 0.05, 0.00)
max (23.74, 1.68, 0.80) (31.93, 28.65, 0.70) (17.88, 1.06, 0.32) (29.19, 38.16, 0.82)

std. dev. (1.09, 0.13, 0.05) (1.40, 1.08, 0.07) (1.08, 0.12, 0.04) (1.43, 1.23, 0.08)
RMSE (2.08, 0.24, 0.07) (2.76, 1.97, 0.12) (2.08, 0.24, 0.07) (2.78, 2.07, 0.12)

Case 3: Fiducial object detection and tracking
mean (0.43, 0.16, 0.01) (0.65, 1.34, 0.06) (0.54, 0.16, 0.01) (0.64, 1.33, 0.06)

median (0.31, 0.14, 0.01) (0.58, 1.18, 0.05) (0.34, 0.14, 0.01) (0.57, 1.18, 0.05)
min (0.01, 0.00, 0.00) (0.01, 0.00, 0.00) (0.01, 0.00, 0.00) (0.01, 0.02, 0.00)
max (3.53, 1.64, 0.07) (5.38, 8.42, 0.24) (5.31, 1.76, 0.08) (4.12, 7.60, 0.28)

std. dev. (0.40, 0.10, 0.01) (0.36, 0.78, 0.04) (0.59, 0.11, 0.01) (0.36, 0.77, 0.04)
RMSE (0.58, 0.19, 0.02) (0.74, 1.55, 0.07) (0.80, 0.19, 0.02) (0.73, 1.54, 0.07)

           * The number of Monte Carlo realizations is realizations 100n  . Bold values represent best performance among considered 
                cases. See Section 4.4 for corresponding parameter values.
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and tracking (i.e., Case 3) and theoretical wireless 
sensing (i.e., Case 1) show similar performance, while 
commercial wireless sensing (i.e., Case 2) introduces a 
signifi cant number of outliers beyond centimeter-level 
translation accuracy. These observations are further 
supported by statistics summarized in Table 1, where 
fi ducial object detection and tracking excels across 
most metrics while theoretical wireless sensing closely 
follows. Based on maximum residual joint translation 
error, commercial wireless sensing proves unreliable in 
joint translation estimation and is thus unsafe for post-
earthquake damage assessment.

As an initial assessment of applicability, we evaluate 
the reliability and repeatability of IDR estimates 
by calculating translation error (in the equivalent 
longitudinal direction of the 3D FE models) between 
engineered landmarks on adjacent fl oors. For all cases 
and Monte Carlo realizations, we average the nine 
discrete translation errors (per fl oor) to represent average 
IDR error, and take the maximum value. Figure 6(c)
illustrates maximum average IDR distributions for the 
previously summarized cases, with summary statistics 
included in Table 1. Again, fi ducial object detection and 
tracking and theoretical wireless sensing exhibit similar 

performance with signifi cant accuracy benefi ts over 
commercial wireless sensing.

We further evaluate applicability by considering 
SLE 0.5%   and MCE 1.0%   IDR limit states, 
which have been adopted from the Tall Building Initiative 
(TBI) (Pacifi c Earthquake Engineering Reasearch 
Centre (PEER), 2017). These limit states represent the 
maximum allowable IDR at extreme points (for each 
fl oor) to protect against permanent lateral deformation, 
with more stringent requirements for SLE to prevent 
non-structural component damage. For all SLE and 
MCE earthquake responses, we 1) take the maximum 
IDR, 2) bound results with maximum average IDR errors 
over all Monte Carlo realizations, 3) and normalize these 
errors by SLE  and MCE  as shown in Fig. 7.

Similar to maximum average IDR error distributions, 
results show course embedded landmark installation 
limits the reliability of our framework, with [0.48, 0.85] 
and [0.23, 0.43] min-max SLE and MCE utilization errors 
yielding post-earthquake assessment unsafe for fi ducial 
object detection and tracking and theoretical wireless 
sensing. Given precise installation, fi ducial object 
detection and tracking remains within 10% tolerance of 
MCE  for reliable and repeatable MCE post-earthquake 

Fig. 6   (a) Residual translation error (cm) (b) residual rotation error (°) and (c) maximum average inter-story drift ratio error (%) 
         box plots for the following cases: A: (theoretical LVDT, precise installation), B: (theoretical LVDT, course installation), 
        C: (practical LVDT, precise installation), D: (practical LVDT, course installation), Case 1: theoretical wireless sensing, 
        Case 2: commercial wireless sensing, Case 3: fi ducial object detection and tracking. See Section 4.4 for corresponding
            parameter values
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assessment, while all other cases exceed this threshold. 
For SLE post-earthquake assessment, the 10% tolerance 
is exceeded in all cases. As a course estimate of SLE and 
MCE IDR limit state utilization, Fig. 7 suggests fi ducial 
object detection and tracking and theoretical wireless 
sensing is adequate for the particular FE model chosen 
in this study.

5  Conclusion

In this paper, we present a novel graph-based state 
estimation framework that enables 6-DoF structural joint 

localization in non-line-of-sight conditions. By unifying 
simultaneous localization and mapping and engineered 
landmark factors within a common graph, we solve the 
maximum a posterior estimate of robot, landmark, and 
joint states via nonlinear least squares optimization. We 
asses the applicability of our framework via the Monte 
Carlo method in simulation, where state uncertainty is 
modelled after state-of-the-art simultaneous localization 
and mapping, theoretical and commercial wireless 
sensing, state-of-the-art fi ducial object detection and 
tracking, and precise and course installation errors. 
Over a suite of realizations and case-specifi c noise 

Fig. 7  Maximum service-level earthquake (SLE) and maximum considered earthquake (MCE) inter-story drift ratios 
         normalized to SLE 0.5%   and MCE 1.0%   IDR limit states, respectively. SLE and MCE limit states have been 
             adopted from the Tall Building Initiative (TBI) (Pacifi c Earthquake Engineering Research Centre (PEER), 2017), where 
      measured limit states below 1.00 (dashed black line) utilization indicate adequate performance. Error bounds 
               (indicated in the legend) represent the maximum average IDR error over all Monte Carlo realizations
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parameters, we quantify residual joint pose error 
distributions, maximum average inter-story drift ratios, 
and related summary statistics for a 19-story nonlinear 
structural model. Experimental results show fi ducial 
object detection and tracking has the potential to off er 
accurate and repeatable inter-story drift estimates given 
precise engineered landmark topology as a means of 
global damage assessment. Following this study, we aim 
to validate the real-world performance of our proposed 
framework in laboratory testing.
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